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Abstract. We evaluate the two-photon box contribution to heavy fermion production in electron positron
annihilation, that provides O(α2) electromagnetic corrections to the Born cross section. The study of its
non-relativistic expansion, relevant at energies close to the threshold of production, is also performed. We
also verify that the threshold expansion of the one-loop integrals correctly reproduces our results, thus
extending the applicability of this technique to heavy fermion production diagrams.

1 Introduction

Heavy fermion production processes out of electron posit-
ron annihilation, e+e− → ff̄ , have become a subject of
thorough study in the last years. Their interest embodies
multiple features and a wide energy range, from close to
threshold production to high-energy colliders. LEP and
LEP2 have provided the appropriate tool pushing behind
this burst. In addition this is among the scattering pro-
cesses with a higher expected number of events at a fu-
ture Linear Collider running in the 0.5 TeV–1 TeV energy
region like TESLA and NLC/JLC-X, or CLIC at higher
energies. Their interest arises mainly from the possibility
of exploring new physics and, therefore, an accurate de-
scription within the standard model is necessary for the
analyses of data. Projects like ZFITTER [1] and the ongo-
ing CalcPHEP [2,3] aim to provide the relevant theoretical
framework for that purpose.

QED corrections seem to be of little interest when
probing the quantum effects within the standard model,
but it is obvious that their contribution, however small,
should be considered in order to disentangle new physics
effects. Besides, if a deeper understanding of the physical
parameters of heavy fermions is intended, electromagnetic
τ+τ− and heavy quark QQ production out of e+e− anni-
hilation at threshold energies supplies the required infor-
mation.

From a theoretical point of view e+e− → ff̄ cross
sections close to threshold evaluated within perturbation
theory are misleading due to the presence, in the phys-
ical system, of a kinematical variable of the same order
as the gauge theory coupling: the velocity of the heavy
fermion pair in the center of mass of the colliding sys-
tem, β = (1 − 4M2/s)1/2, with M the mass of the f
fermion. Hence, when β ∼ α, care has to be taken in or-
der to resum terms as (α/β)n or (α lnβ)n that can give
potentially large contributions [4]. Recently the develop-
ment of non-relativistic effective field theories of QED and

QCD [5] enabled one to implement the suitable system-
atic procedure to follow. Facilities as the proposed Tau-
Charm Factory, a high-luminosity e+e− collider with a
center-of-mass energy near the τ+τ− production thresh-
old [6], would provide excellent information on the mass
of this lepton [7]. Moreover an accurate determination of
the mass of the top quark (difficult to get at the next
hadron colliders) requires a future lepton collider at the
tt threshold [8]. Consequently a thorough study of the
non-relativistic contribution to σ(e+e− → ff̄) both from
electromagnetic and strong interactions is mandatory.

In [7] a detailed study of the threshold behavior of
σ(e+e− → τ+τ−) was performed, and it was pointed out
that, within the O(α2) electromagnetic corrections to the
Born cross section, the squared amplitude of the box dia-
gram involving two-photon τ+τ− production (see Fig. 1)
had not been considered yet. The electroweak one-loop
contributions to the e+e− → ff̄ process were evaluated
in [9]. Here this box contribution was already taken into
account, though an explicit expression was only given for
the M = 0 case. In this paper we provide the amplitude
of this diagram for a final massive fermion1.

Once the explicit result is worked out we perform its
non-relativistic expansion in terms of the velocity β and
we find that the contribution of this diagram to the cross
section is of O(α4β3), that is, O(α2β2) over the Born cross
section. The additional suppression driven by the veloc-
ity squared indicates that the contribution of the two-
photon box diagram to the production of heavy fermions
at threshold is negligible compared to the precision fore-
seen in the next future.

In Sect. 2 we give details on the calculation of the box
diagram contributing to e+e− → ff̄ in the limit when
me � M , and we provide the full analytical result. Sec-
tion 3 is dedicated to the study of the threshold behavior

1 While writing this article [3] appeared. In this preprint a
full expression for the QED box diagram amplitude is also
given
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Fig. 1a,b. Direct a and crossed b box
diagrams for e+e− → ff̄

of the box amplitude as obtained directly from our previ-
ous result. We confirm the features of this threshold ampli-
tude by performing an alternative analysis of the integrals
through the asymptotic expansion method in Sect. 4. Our
conclusions are collected in Sect. 5. Finally, two appen-
dices contain the basic scalar integrals appearing in this
article and a comment on the infrared divergent part of
the box amplitude.

2 Two-photon box diagram

The contribution to the S-matrix of the process e−(p)
e+(p′) → f(k)f̄(k′) of the two-photon box amplitudes is
depicted in Fig. 1 and it is defined by

〈ff̄ |iT |e+e−〉box = (2π)4δ(p + p′ − k − k′)iMbox. (1)

As we are interested in heavy fermion production we
will perform the evaluation for k2 = k′2 = M2 and p2 =
p′2 = m2 � M2 (we neglect the electron mass where pos-
sible). The two-photon box amplitude is gauge invariant
and, consequently, we perform the calculation by taking
the Feynman choice. The direct box amplitude, Fig. 1a, is
written down following QED Feynman rules as follows:

Ma = e4Q2
f

∫
d4�

i(2π)4
× (2)

{v̄e(p′)γµ�/γνue(p)}{ūf (k)γν(/k − /p + �/ + M)γµvf (k′)}
(�2 − m2)[(� + k − p)2 − M2][(� − p)2 − λ2][(� + p′)2 − λ2]

,

where we have introduced a photon mass λ in order to
regularize the infrared divergences known to be present in
this amplitude. The crossed box diagram in Fig. 1b can
be obtained from (2) by adding an overall minus sign,
reversing the order of the γµ, γν matrices in the heavy
fermion bilinear, and performing the substitutions k →
k′ everywhere (except for the spinors) and M → −M .
Hence, in (1), Mbox = Ma + Mb. The evaluation of the
integrals is slightly cumbersome but straightforward, and
the details are given in Appendix A.

With the definition of the Mandelstam variables s =
(p + p′)2 and t = (p − k)2, the spinor structure of Mbox
is decomposed into four sets of amplitudes Lρκ

i multiplied
by the corresponding coefficients wρ

i :

Mbox(κ; s, t) = e4Q2
f

4∑
i=1

∑
ρ=±1

Lρκ
i wρ

i , (3)

with the basic amplitudes

Lρκ
1 = [v̄e(p′)γµPκue(p)][ūf (k)γµ(1 + κργ5)vf (k′)],

Lρκ
2 = [v̄e(p′)/kPκue(p)][ūf (k)/p(1 + κργ5)vf (k′)],

Lρκ
3 = [v̄e(p′)/kPκue(p)][ūf (k)(1 + κργ5)vf (k′)],

Lρκ
4 = [v̄e(p′)γµPκue(p)][ūf (k)γµ/p(1 + κργ5)vf (k′)]. (4)

The latter have been written in terms of the initial state
e+e− chiral projectors

Pκ =
1
2
(1 + κγ5), κ = ±1, (5)

which, as we are considering massless initial fermions, sat-
isfy Pκue(p) = ue(p), κ being the initial electron helicity;
in the massless limit, the positron helicity is forced to
be −κ in order to have a non-vanishing amplitude. The
dependence of Mbox on the spin state of the final state
fermions has not been explicitly stated.

The wρ
i coefficients can be written in terms of four

auxiliary functions Fi, i = 0, 1, 2, 3:

w+
1 =

1
2
F0(s, t),

w−
1 = −1

2
F0(s, u),

w+
2 = F1(s, t) + F2(s, t),

w−
2 = F1(s, u) + F2(s, u),

w+
3 = M(F1(s, u) − F1(s, t) + F3(s, u) − F3(s, t)),

w−
3 = M(F3(s, u) − F3(s, t)),

w+
4 = −1

2
M(F2(s, t) − F2(s, u)),

w−
4 =

1
2
M(F2(s, t) − F2(s, u)), (6)

that read

F0(s, t) = Fλ
0 (s, t) +

M2 − t

(M2 − t)2 + st

×
{

t (sD0 − 2Ct) − M2 M2 − s − t

M2 − t

(
sD0 − 2Ct

)

−
(
2M2 − s − 2t

)
(Cs + CM )

}
, (7)

F1(s, t) =
1

(M2 − t)2 + st

×
{

2(Bt − Bs) +
4M2

M2 − t
(BM − Bt) +

M2 − t

(M2 − t)2 + st

×
[
(2M2 − s − 2t)

(
(M2 − t)(sD0 − 2Ct) + sCs

)

+
(
2(M2 − t)2 + s(2t + s − 4M2)

)
CM

]}
, (8)
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F2(s, t) = Fλ
2 (s, t) − 1

(M2 − t)2 + st

×
{

(M2 + t) (sD0 − 2Ct) − (s − 4M2)CM

− (2M2 − s − 2t)Cs

}
, (9)

F3(s, t) =
1

(M2 − t)2 + st

×
{

2t

M2 − t
(Bt − BM ) +

2(M2 + t)
4M2 − s

(Bs − BM )

− (M2 − t)2

(M2 − t)2 + st
[(M2 − t)(sD0 − 2Ct) + sCs]

+
1

(4M2 − s)((M2 − t)2 + st)

×
[

− 4M8 + 6(s + 2t)M6 − (s + 2t)(s + 6t)M4

+ 2t(s2 + ts + 2t2)M2 + s2t2
]
CM

}
. (10)

Full expressions for the scalar functions Bs, Bt, BM , Cs,
Ct, Ct, CM , D0 and D0 can be found in (A.5)–(A.13) of
Appendix A. It can be seen from F1(s, t) and F3(s, t) that
the two-point functions Bt, Bs and BM only appear in
non-divergent combinations, while the rest of scalar inte-
grals in Fi(s, t) are UV finite. Clearly Mbox(κ; s, t) is ul-
traviolet finite. Scalar integrals D0 (D0) and Ct (Ct) are
infrared divergent for vanishing photon mass λ; however,
the combinations sD0–2Ct and sD0–2Ct are divergence-
less. Hence all the divergences in the Fi(s, t) functions are
collected in Fλ

0 (s, t) and Fλ
2 (s, t), given by

Fλ
0 (s, t) = 2

(
M2 − s − t

)
D0,

Fλ
2 (s, t) = 2D0, (11)

and we get for the infrared divergent part of the box am-
plitude

MIR
box =

e4Q2
f

8π2s

(
L+κ

1 + L−κ
1

)
ln

(
M2 − u

M2 − t

)
ln

(
−s − iδ

λ2

)
.

(12)
A more complete discussion on the infrared structure of
the QED box diagram and the determination of MIR

box is
relegated to Appendix B.

Incidentally our result can be used to evaluate a simi-
lar two-gluon box contribution to the heavy quark produc-
tion out of light quarks, q(A)q̄(B) → Q(C)Q(D) (between
parentheses we label the color quantum numbers). In or-
der to get this amplitude we need to substitute the e4Q2

f

factor in (3) by g4
s(tbta)BA{ta, tb}CD (a sum over repeated

indices is implied)2.
We have checked that our amplitude in (3), when

summed over the polarizations, coincides with a recent
result found in [3], though these authors use a different

2 In this color factor ti = λi/2, where λi are the SU(3) Gell-
Mann matrices and Tr(titj) = δij/2

basis of spinor operators. Moreover, from our calculation
for Mbox, we can recover the case where the final fermions
are massless. The limit M → 0 can be directly applied to
the w±

i coefficients, (6), and to the scalar integrals quoted
in Appendix A. Within this limit our result agrees with
the earlier calculation in [9].

3 Heavy fermion production at threshold

Close to ff̄ threshold, it is more convenient to expand
the production amplitude in terms of the fermions ve-
locity in the center of mass of the colliding system β =
(1 − 4M2/s)1/2. Hence production amplitudes are writ-
ten in a combined expansion in powers of α and β, and
the importance of each contribution is estimated taking
α ∼ β. This feature spoils the perturbative expansion in
QED due to the appearance of O(αn/βn) and O(αm lnn β)
terms that diverge as β → 0. As a consequence, a resum-
mation of such terms is necessary to avoid a breakdown of
the perturbative series, and well-known results from the
familiar non-relativistic quantum mechanics are obtained.
Nevertheless it is somewhat misleading to associate the
appearance of these Coulomb terms to the non-relativistic
motion of the fermion pair, as the scattering amplitude
calculated from quantum mechanics does not show any
kinematic singularity close to threshold: their ultimate ori-
gin is the inadequacy of the diagrammatic QED expansion
in powers of α to account for the correct non-relativistic
dynamics. Keeping this in mind, one should not discard,
a priori, divergent terms in the velocity appearing in any
QED diagram involving fermions with small velocities.

In [7] it was pointed out that the contribution at thresh-
old of the two-photon box diagram should be analyzed in
a NNLO calculation of σ(e+e− → τ+τ−). In this section
we proceed to perform the expansion on Mbox as given in
(3). The leading terms in the velocity expansion of the co-
efficients w±

i can be obtained by taking into account the
dependence of the Mandelstam invariants s, t, u on the
velocity β and the angle θ between the momenta of the
heavy fermion and the electron in the colliding center-of-
mass system. The relation is given by

s =
4M2

1 − β2 , t = M2 − 2M2

1 − β2 (1 − β cos θ),

u = M2 − 2M2

1 − β2 (1 + β cos θ). (13)

Carrying these expressions to the w±
i coefficients displayed

in (6) and neglecting O(β2) terms we obtain

w+
1 =

1
384M2π2

[
−π2 + 3 ln2 4M2

λ2 − 3 ln2 m2

λ2

+
(

8 − 14iπ − 8 ln 2 + 12 ln
4M2

λ2

)
β cos θ

]
+ O(β2),

w−
1 = −w+

1 (β → −β),

w+
2 =

1
384M4π2



556 J. Portolés, P.D. Ruiz-Femeńıa: QED box amplitude in heavy fermion production

×
[
π2 − 8 + 8iπ + 8 ln 2 − 3 ln2 4M2

λ2 + 3 ln2 m2

λ2

+
(

π2 − 34 + 4iπ + 16 ln 2 + 12 ln
4M2

λ2

− 3 ln2 4M2

λ2 + 3 ln2 m2

λ2

)
β cos θ

]
+ O(β2),

w−
2 = w+

2 (β → −β),

w+
3 =

1
240M3π2 (37 + 2iπ − 64 ln 2)β cos θ + O(β2),

w−
3 =

−1
480M3π2 (11 + iπ − 32 ln 2)β cos θ + O(β2),

w+
4 =

−1
384M3π2

×
(

π2 + 6iπ − 48 ln 2 + 12 ln
4M2

λ2 − 3 ln2 4M2

λ2

+ 3 ln2 m2

λ2

)
β cos θ + O(β2),

w−
4 = −w+

4 . (14)

The amplitudes Lρκ
i , containing fermion wave functions,

must also be expanded in terms of β to fulfill the expansion
of Mbox at small velocities. We shall not give the full
result of such an expansion, but just quote their leading
behavior, which can easily be obtained by choosing an
explicit representation of the gamma matrices and spinors.
We thus get

Lρκ
1 = O(1), Lρκ

2 = O(β), Lρκ
3 = O(β), Lρκ

4 = O(1).
(15)

The terms quoted in (14) together with the expansion in
(15) allow us to obtain the leading near threshold contri-
bution to the cross section of the box amplitude Mbox.
Recall that, by virtue of Furry’s theorem, the interference
of the QED box amplitude with other one-loop amplitudes
for the process e+e− → ff̄ vanishes and, consequently,
|Mbox|2 adds incoherently to the rest of O(α4) correc-
tions to σ(e+e− → ff̄), as studied in [7]. The final result
for the squared and averaged box amplitude is

1
4

∑
pol.

|Mbox|2 = (Qfα)4
{

16
9

(π2 + (1 − ln 2)2) (16)

+
[
−1

2
L4

M − 4L3
M − 2L3

M �m

+
(

−2�2m − 12�m +
8
3

ln 2 +
π2

3
+

160
3

)
L2

M

+
(

−8�2m +
(

16
3

ln 2 +
2
3
π2 +

320
3

)
�m

− 288 ln 2 +
4
3
π2 + 32

)
LM

+ 56�2m +
(

−288 ln 2 +
4
3
π2 + 32

)
�m

+
3088

9
ln2 2 − 800

9
ln 2

− π4

18
− 8

9
π2 ln 2 − 14

3
π2 +

16
9

]
cos2 θ

}
β2 + O(β3),

with

LM ≡ ln
4M2

m2 and �m ≡ ln
m2

λ2 . (17)

Hence we conclude that the result in (16), proportional to
α4β2, represents a N4LO correction with respect to the
LO result (the tree-level e+e− → ff̄ amplitude squared,
which is already of O(α2)). In [7], box amplitudes were
not included with the rest of the one-loop diagrams to
complete the NNLO calculation of σ(e+e− → τ+τ−) at
threshold, their behavior with β being unknown. Our eval-
uation of |Mbox|2 has proven that this is, indeed, β2 sup-
pressed with respect the NNLO contributions considered
in [7].

4 Threshold amplitude
by asymptotic expansion of integrals

The counting of powers of the velocity appearing in a de-
fined amplitude is not straightforward because β is not
a parameter in the Lagrangian, but rather a dynamic
scale which is driven by the propagators inside loop in-
tegrals. In recent years, this issue made it awkward to
define a non-relativistic effective theory suitable for de-
scribing quarks and leptons at low velocities. Important
progress was made after the development of the threshold
expansion by Beneke and Smirnov [10]. This technique al-
lows for an asymptotic expansion of Feynman integrals
near threshold, providing a set of much simpler integrals
which are manifestly homogeneous in the expansion pa-
rameter and so have a definite power counting in the ve-
locity. The procedure should confirm that the two-photon
box amplitude is not enhanced at low β, as we have found
by explicit evaluation. This we discuss in the following.

The expansion method, described in [10], begins by
identifying the relevant momentum regions in the loop
integrals, which follow from the singularity structure of the
Feynman propagators dictated by the relevant scales that
appear in the problem. For on-shell scattering amplitudes
of heavy fermions, three scales are identified: the heavy
fermions mass, M , their relative three-momentum, |k| ∼
Mβ and their energy k0 ∼ Mβ2. Accordingly, the loop
four-momentum near the singularities can be in any of
the following regimes:

hard : �0 ∼ |�| ∼ M,

soft : �0 ∼ |�| ∼ Mβ,

potential : �0 ∼ Mβ2, |�| ∼ Mβ,

ultrasoft : �0 ∼ |�| ∼ Mβ2. (18)

The original integral is then decomposed into a set of inte-
grals, one for every region, and a Taylor expansion in the
parameters, which are small in each regime, is performed.
Every integral, containing just one scale, will thus con-
tribute only to a single power in the velocity expansion.
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The procedure requires the use of dimensional regulariza-
tion in handling the integrals, even if they are finite, in
order to assure that the result from each regime just picks
up the corresponding pole contribution and vanishes out-
side it. Following these heuristic rules, the authors of [10]
reproduce the exact β expansion of some one-loop and
two-loop examples. Although a formal proof of the valid-
ity of the asymptotic expansion close to threshold has not
been given, the perfect agreement in the examples sup-
ports their use in general one-loop diagrams. We provide
a new test by addressing the rules to the QED box am-
plitude with e+e− in the initial state, extending the use
of the threshold expansion to diagrams with heavy and
massless fermions in the external legs (i.e. production-like
diagrams). We will keep the electron mass finite along the
procedure, although much smaller than any other scale,
to keep track of the logarithms of m present in the box
amplitude.

Our amplitude Mbox is characterized, as shown in Ap-
pendix A, by the four-point integrals D0, Dµ, Dµν in (A.1).
If present, inverse powers of the velocity in Mbox can only
originate from these integrals. In addition, we can focus
on the behavior of the scalar integral D0, as the �µ, �µ�ν

vectors in Dµ and Dµν will produce factors of one of the
scales of the problem (M, Mβ or Mβ2) in the numerator
of the amplitude without affecting the leading singular
behavior in β. Let us change the routing of momenta in
D0 (A.1) in order to make the scaling arguments more
transparent:

D0 =
∫

dD�

i(2π)D

{
1

[(Q/2 + T/2 − �)2 − m2]

× 1
[(Q/2 + R/2 − �)2 − M2][�2 − λ2]

× 1
[(Q − �)2 − λ2]

}
, (19)

where the standard +iδ prescriptions are implicitly under-
stood in the propagators, the Q and R vectors are defined
in relation with (A.1) and T = p − p′. The external four-
vectors Q and R scale as M and Mβ respectively, while
T 2 = −s + 4m2 ∼ M2. Using momentum T is preferred
to the electron (positron) momentum p (p′) because the
spatial and time components of the latter, although they
scale as M , are canceled in the total momentum squared
p2 = m2 ∼ 0. The infrared regularization of the integrals
is automatically guaranteed by dimensional regularization
and, therefore, we will not longer retain a fictitious mass
for the photon.

In the potential region �0 � |�| � M and, accordingly,
we can expand terms in the propagators. The leading con-
tribution is

Dp
0 =

∫
dD�

i(2π)D

1
(� · T )(−�2 + � · R − Q0�0)(−�2)(Q2

0)
,

(20)
where we have also dropped the term −�2 in the electron
propagator to be compared to � · T ∼ M2β. The overall
scaling of the potential integration is easily estimated to

be of order M4β5/M8β5 ∼ 1/M4, so no velocity enhance-
ment in this region is expected. In fact, the integral above
is zero because, closing the �0 integration contour in the
lower half-plane, the pole at �0 = (� · R − �2)/Q0 + iδ lies
outside3. Similarly, subleading terms in the expansion of
propagators in this region are vanishing, as they share the
same pole structure.

When the loop momentum � is soft or ultrasoft, the
assumption �0 ∼ |�| � M leads to the same expansion of
the propagators in D0:

Ds,us
0 =

∫
dD�

i(2π)D

1
(� · T − Q0�0)(−Q0�0)(�20 − �2)(Q2

0)
.

(21)
It scales as 1/M4 in both the soft and ultrasoft regimes
and, indeed, vanishes in dimensional regularization be-
cause, after picking up the residue in the lower plane,
�0 = |�| − iδ, the remaining D − 1 dimension integral is
scaleless:

Ds,us
0 =

1
2Q3

0

∫
dD−1�

(2π)D−1
1

|�|2
1

(Q0|�| − T · �)

=
1

2Q3
0

∫
dΩD−1

(2π)D−1

1
(Q0 − |T | cos ϕ)

×
∫

d|�||�|D−2 1
|�|3 = 0, (22)

with ϕ the angle between the vectors T and �. The same
argument holds for subleading terms in this region.

Finally, the integral in the hard region is obtained
by dropping out terms involving non-relativistic fermion
three-momenta from propagators. Hence, the only scale
which remains is the hard parameter M , so there is no
additional velocity dependence in the denominators. More
explicitly, the expanded integral in the hard regime, at
leading order in β, is

D
h,O(1)
0 =

∫
dD�

i(2π)D
(23)

× 1
(�2 − � · T − Q · �)(�2 − Q · �)�2(Q − �)2

,

and there is no need to separate time from spatial com-
ponents in the integration. The above integral trivially
scales a 1/M4, and its explicit calculation in D = 4 − 2ε
dimensions has been performed following [11]:

D
h,O(1)
0 =

µ−2ε

8πs2 ln
s

m2 (24)

×
[
1
ε

− ln
(

−s − iδ
µ2

)
+ ln(4π) − γE

]
,

3 Notice that the �0 integration in Dp
0 does not vanish in the

outer semicircle. Rigorously we should keep the �20 term in the
heavy fermion propagator, so Dp

0 is well defined. Poles would
then be located at �±

0 = (1/2)(Q0 ±(Q2
0 −4(� ·R−�2)− iδ)1/2).

The root �+0 scales as M and is taken into account in the hard
region while �−

0 = (� · R − �2)/Q0 + iδ once we consider that
|�| � M in the potential region, and we recover the above
result
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where γE is the Euler–Mascheroni constant. Terms pro-
portional to the electron mass m have been dropped. The
pole in (24) is of infrared origin, and it is the analogous to
the lnλ2 term in the full result of D0, (A.5). Indeed, (24)
reproduces the leading term in the velocity expansion of
D0, after the usual replacement lnλ2 → (4π)ε/Γ (1− ε)/ε.

The following order in the expansion within the hard
region would have a � ·R = −� ·R term in the numerator,
and it would behave as β/M4:

D
h,O(β)
0

=
∫

dD�

i(2π)D

� · R

(�2 − � · T − Q · �)(�2 − Q · �)2�2(Q − �)2

=
R · T

T 2

(
Dh

0 −
∫

dD�

i(2π)D

1
(�2 − Q · �)2�2(Q − �)2

)

=
β cos θ

8π2s2 µ−2ε
(
ln

s

m2 − 2
)

×
[
1
ε

− ln
(

−s − iδ
µ2

)
+ ln(4π) − γE

]
, (25)

which agrees with the second term in the velocity expan-
sion of D0. The series expansion in β of the scalar function
D0 is thus reproduced by that of Dh

0 , while the rest of the
integration regions does not contribute at all.

Therefore we have seen, by asymptotic expanding the
integral before its computation, that the box amplitude
receives no contributions from the regions of potential,
soft and ultrasoft loop momentum, and it is then preserved
from Coulomb type singularities, as was shown by explicit
calculation. This fact reveals that, as expected, the box
production graph is a process dominated by the high scale,
as it involves annihilating photons which carry energies of
the order of the mass of the non-relativistic fermions.

Let us finally note that, although we have reproduced
the (logarithmic) electron mass dependence of D0 through
the threshold expansion technique, we could, a priori, need
to consider new regions to successfully obtain the sub-
leading terms O(m2/M2), O(m2/(q2 − 4M2)), etc. This
is what happens, for example, if one considers the one-
loop two-point scalar function with one heavy mass M
and one light mass m at values of q2 � M2: Keeping
m finite but smaller than any other scale present (i.e.
m � (q2 − M2)/M � (q2 − M2)1/2 � M), the inte-
gration region where �2 ∼ m2 gives a non-vanishing con-
tribution proportional to m2/(q2 − M2). A new pattern
of integration regimes should then be considered to make
each integral homogeneous also in the m2 scale.

5 Conclusions

The interest in the study of electron positron annihila-
tion into heavy fermions has been ushered by the multiple
features foreseen both in high-energy colliders and pro-
duction at threshold. These include all-important aspects
of the phenomenology like an accurate measurement of
the heavy fermion masses (like τ or t) and, the possibil-
ity, of exploring new physics beyond the standard model.

This goal requires the computation and implementation of
complete perturbative orders within the standard model.

We have evaluated the QED two-photon box diagrams
of Fig. 1 contributing to σ(e+e− → ff̄) with massive final
fermions (me � M), and we have provided a full ana-
lytical expression for the amplitude. Its contribution at
the production threshold has also been studied and we
have found that it is negligible because of the high ve-
locity suppression. This non-relativistic analysis comple-
ments the one carried out in [7] and shows that the con-
clusions reached in that reference are not modified by the
QED box amplitude.

Finally we have analyzed this low velocity behavior
using the strategy of regions to expand the Feynman in-
tegrals near threshold, confirming that such an expansion
can also be applied to diagrams involving heavy and light
fermions. This feature allows one to identify and evalu-
ate, at a fixed order in the heavy fermion velocity, contri-
butions to heavy fermion production or annihilation dia-
grams triggered by light fermions.
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Appendix

A Integrals in the box amplitude

In this appendix we outline several features of the inte-
gration procedure, in order to evaluate the QED box dia-
grams, and we collect the explicit expressions for the rel-
evant scalar integrals that appear in our results.

The general structure of the two-photon box amplitude
in Fig. 1a, Ma takes the form Ma = a0D0 + aµDµ +
aµνDµν , where a0, aµ, aµν contain Dirac algebra γ’s and
spinors, and D0, Dµ, Dµν are the integrals over the loop
momentum �:

D0; Dµ; Dµν =
∫

d4�

i(2π)4
1; �µ; �µ�ν

(�2 − m2)
(A.1)

× 1
[(� + k − p)2 − M2][(� − p)2 − λ2][(� + p′)2 − λ2]

,

which depend on three independent four-vectors and
where +iδ prescriptions are understood in the propaga-
tors. Let us define our basis as P = p − k, Q = p + p′ and
R = k − k′, with scalar products

P 2 = t, Q2 = s, R2 = 4M2 − s,

P · Q = 0, P · R = m2 − M2 − t, Q · R = 0.
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The integrals in (A.1) are invariant under the interchange
{p; k} ↔ {−p′; −k′}. Under the same transformation P →
P , Q → −Q and R → R, and thus the tensor integrals
Dµ, Dµν do not contain terms linear in Q, justifying our
choice of basis. The tensor decomposition of Dµ, Dµν then
reads

Dµ = DP Pµ + DRRµ (A.2)
Dµν = DPP PµPν + DPR(PµRν + RµPν) + DRRRµRν

+ DQQQµQν + sD00gµν . (A.3)

Further reduction of the coefficient functions appearing in
(A.2) and (A.3) has been performed with the help of Feyn-
Calc [12]. These coefficients are thus expressed as a linear
combination of a set of scalar integrals: D0, Cs, Ct, CM ,
Bs, Bt and BM , with the four (D0), three (Ca, a = s, t, M)
and two (Ba, a = s, t) propagators that we collect next.

The relevant scalar integrals have been evaluated fol-
lowing the method described in [13], except for the rather
cumbersome four-point function D0. In the latter case we
have first calculated its imaginary part in the s-channel,
in accordance with the optical theorem, and then the real
part has been reconstructed through the t-fixed unsub-
tracted dispersion relation that satisfies D0:

ReD0(s, t) =
1
π

∫ ∞

4λ2
− dx

ImD0(x, t)
x − s

, (A.4)

where the Principal Value of the integral is understood.
We have performed its calculation in the λ � m � M
limit and, therefore, we have neglected photon masses
when possible. As emphasized in [14], the limit λ → 0
is not trivial for the occurrence of terms like λ2/(x−4λ2),
which diverge for finite λ as x → 4λ2 but vanish for
λ → 0 at fixed x �= 4λ2. As a consequence the photon
mass should be kept finite until the final stages.

The scalar integrals that appear in the two-photon box
amplitude result in (3) through the Fi functions of (7)–
(10) have been evaluated in the limit where λ � m � M
and for the specific cases p2 = p′2 = m2, k2 = k′2 = M2,
(p + p′)2 = (k + k′)2 = s, (p − k)2 = t. They read

D0 =
∫

d4�

i(2π)4
1

[�2 − λ2][(� + p)2 − m2)]

× 1
[(� + p + p′)2 − λ2][(� + k)2 − M2]

=
−1

8π2s(M2 − t)
ln

M2 − t

mM
ln

−s − iδ
λ2 , (A.5)

D0 = D0(t → u), (A.6)

Cs =
∫

d4�

i(2π)4

× 1
[�2 − λ2][(� + p)2 − m2][(� + p + p′)2 − λ2]

=
1

32π2s

[
ln2

(
−s − iδ

m2

)
+

π2

3

]
, (A.7)

Ct =
∫

d4�

i(2π)4

× 1
[�2 − M2][(� − k)2 − λ2][(� + p − k)2 − m2]

=
−1

16π2(M2 − t)

[
Li2

(
t

M2

)
+ ln2

(
M2 − t

Mm

)

+ ln
(

M2 − t

Mm

)
ln

(
m2

λ2

)]
, (A.8)

Ct = Ct(t → u), (A.9)

CM =
∫

d4�

i(2π)4

× 1
[�2 − λ2][(� + k)2 − M2][(� + k + k′)2 − λ2]

=
1

16π2sβ

[
−2Li2(1 − β) + 2Li2

(
1 − β

1 + β

)

+
1
2

ln2
(

1 − β

1 + β

)
− 2Li2(−β)

− 2 lnβ ln(1 + β) + iπ ln
1 − β

1 + β

]
, (A.10)

Bs =
∫

dD�

i(2π)D

1
[�2 − λ2][(� + p + p′)2 − λ2]

=
−1

16π2

(
∆ + ln

−s − iδ
µ2 − 2

)
, (A.11)

Bt =
∫

dD�

i(2π)D

1
[�2 − M2][(� + p − k)2 − m2]

=
−1

16π2

(
∆ + ln

−t

µ2 + ln
(

1 − M2

t

)

− M2

t
ln

M2 − t

M2 − 2
)

, (A.12)

BM =
∫

dD�

i(2π)D

1
[�2 − λ2][(� + k)2 − M2]

=
−1

16π2

(
∆ + ln

M2

µ2 − 2
)

, (A.13)

where Li2(x) is the dilogarithm function. The two-point
functions have been regularized within dimensional reg-
ularization in D dimensions and ∆ = 2µD−4/(D − 4) +
γE − ln(4π), with µ the renormalization scale. From the
full expressions above we see that only the integrals Ct,
Ct, D0 and D0 are infrared divergent for vanishing pho-
ton mass (λ → 0). However, as remarked in the main text,
the combinations sD0–2Ct (or sD0–2Ct) are infrared fi-
nite; accordingly all the infrared divergent contribution is
provided by D0 and D0 in (11) that carry a lnλ2 factor.

B Infrared divergence
of the QED box diagram

There are several well-known facts on the structure of in-
frared divergences in QED that are relevant for our dis-
cussion [15]:

(1) Virtual photon radiative corrections between the ex-
ternal legs of a divergenceless root diagram generate
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Fig. 2. Diagrams contributing to the
infrared divergence of the QED box di-
agram. The wavy line corresponds to a
hard photon and the dashed line to a
soft photon. As explained in the text
the infrared divergence factorizes and
the spinor structure is the one of the
hard diagram (without radiative cor-
rections)

an infrared divergent contribution that follows a spe-
cific pattern in the perturbative expansion. Such a
structure provides a factorization of the resummation
of the divergences at all orders.

(2) The whole infrared divergence in virtual photon ra-
diative corrections commented on above arises from
the eikonal approach in the propagator of the radi-
ating external legs. For spin 1/2, for example, with
k the outgoing soft photon momentum of εµ(k) po-
larization and p the ingoing external momentum, the
modification of the fermion wave function reads

u(p)
photon

−−−−→ 1
p/ − k/ − m + iδ

ε/u(p)

=
(2p − k) · ε − 1

2
[k/, ε/]

k2 − 2k · p + iδ
u(p), (B.1)

which in the eikonal approximation reduces to

u(p)
soft

−−−−→
photon

2p · ε

k2 − 2k · p + iδ
u(p), (B.2)

neglecting, essentially, the spin of the radiating field.

Hence to extract the infrared divergent part of the
QED box diagram in Fig. 1 we need to implement the
eikonal approximation into the amplitude Ma in (2) and
the crossed Mb. This corresponds to the evaluation of the
four diagrams in Fig. 2. These are built from the tree-level
diagram for e+e− → ff̄ through one-photon annihilation,
by attaching a soft photon between an ingoing and an
outgoing external leg in all possible ways. Their evalua-
tion gives

MIR
box = ve(p′)γµue(p)

e2Qf

s
uf (k)γµvf (k′)

×
[
e2Qf

4π2 ln
(

M2 − u

M2 − t

)
ln

(
m2

λ2

)]
, (B.3)

where infrared finite terms have not been written. In fact,
this result has been obtained by integrating over the full
range of momentum of a massive photon. Rigorously we
should define the infrared contribution by imposing an up-
per limit on its momentum |qγ | < Λ, and m2 would then
be replaced by Λ2 in the logarithm of MIR

box. In (B.3) we
have explicitly stated the factorization between the hard
gluon exchange, on the left, and the soft photon exchange
inside the square brackets.

Alternatively we can evaluate MIR
box from our result in

(3) and we obtain

MIR
box =

e4Q2
f

8π2s

×
{

(M2 − t)L−κ
1 + 2L+κ

2 − M
(
L+κ

4 − L−κ
4

)
M2 − t

ln
(

M2 − t

Mm

)

− (M2 − u)L+κ
1 − 2L−κ

2 − M
(
L+κ

4 − L−κ
4

)
M2 − u

ln
(

M2 − u

Mm

)}

× ln
(

λ2

−s − iδ

)
, (B.4)

where the spinor operators Lρκ
i have been defined in (4).

Then, using the following relations4:

(M2 − t)L+κ
1 = 2L+κ

2 − M
(
L+κ

4 − L−κ
4

)
,

(M2 − u)L−κ
1 = −2L−κ

2 − M
(
L+κ

4 − L−κ
4

)
, (B.5)

we finally get

MIR
box =

e2Qf

2s

(
L+κ

1 + L−κ
1

)

4 Relations between spinor operators like these can be ob-
tained by explicit evaluation in a particular reference frame
or transforming the operators into traces in the spinor basis,
hence working with Lorentz invariant expressions
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×
[
e2Qf

4π2 ln
(

M2 − u

M2 − t

)
ln

(
−s − iδ

λ2

)]
, (B.6)

whose infrared logarithm coincides with our previous re-
sult in (B.3), since Pκue(p) = ue(p) in L±κ

1 , κ being the
massless electron helicity.

We conclude that the infrared divergence of the QED
box diagram satisfies the expected features [15] and hence
its cancellation should take place when real soft photon
radiation contributions, at a fixed α perturbative order,
are taken into account.
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